
Quantum time delay in chaotic scattering: a semiclassical approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 4885

(http://iopscience.iop.org/0305-4470/31/21/007)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 4885–4897. Printed in the UK PII: S0305-4470(98)87603-8

Quantum time delay in chaotic scattering: a semiclassical
approach

R O Vallejos†, A M Ozorio de Almeida† and C H Lewenkopf‡
† Centro Brasileiro de Pesquisas Fı́sicas, R Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
‡ Instituto de F́ısica, UERJ, R S̃ao Francisco Xavier 524, 20559-900 Rio de Janeiro, Brazil

Received 15 September 1997

Abstract. We study the universal fluctuations of the Wigner–Smith time delay for systems
which exhibit chaotic dynamics in their classical limit. We present a new derivation of the
semiclassical relation of the quantum time delay to properties of the set of trapped periodic
orbits in the repeller. As an application, we calculate the energy correlator in the crossover
regime between preserved and fully broken time reversal symmetry. We discuss the range of
validity of our results and compare them with the predictions of random matrix theories.

1. Introduction

Over the past decade many studies have been devoted to the understanding of quantum
manifestations of classical chaos. This interest can be explained by the fact that this subject
has applications in many different areas of physics, such as properties of complex systems,
fundamental aspects of the correspondence principle, transport in ballistic mesoscopic
cavities, etc. Most of the theoretical studies have concentrated on spectral properties
of closed systems, accumulating a large body of numerical evidence of universality and
some analytical understanding of this fact. Comparatively few studies have heretofore been
devoted to open systems, and the scattering problem still lacks some solid fingerprints which
serve to clearly distinguish integrable from chaotic classical scattering. For this reason, it
is desirable to study an observable which bridges the well-understood quantum aspects of
closed chaotic systems and the still unclear features of open ones. The Wigner–Smith time
delay [1, 2] is such an object, since it is intimately related to the level (or resonance) density
of the system and it is a genuine scattering observable. This study deals with the universal
features of the time delay common to all chaotic scattering systems.

The concept of time delay in quantum scattering was first considered by Eisenbud [3]
and Wigner [1] in the context of one-channel scattering. Later, Smith [2] extended the
previous discussions to the many-channel problem by introducing the lifetime matrix

Qab(E) = −ih̄
3∑
c=1

Sac(E)
d

dE
S
†
cb(E) (1)

whereS is the standard scattering matrix and the sum runs over all3 open channels denoted
by c. By averaging over the eigenvalues ofQ, one arrives at the so-called Wigner–Smith
time delay

τ(E) = − ih̄

3
Tr

[
S†(E)

d

dE
S(E)

]
= − ih̄

3

d

dE
log detS(E) (2)
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which is then interpreted as the typical time spent by the particle in the interaction region.
Even though this interpretation has some limitations in the case of wavepacket scattering
[4], no difficulties arise when the incoming wave can be considered monoenergetic, a
common situation, for example, in applications to mesoscopic transport phenomena [5, 6]
and microwave cavity experiments [7–9].

In general, one can distinguish two regimes associated with a scattering process: a fast
response (corresponding todirect processes) and a delayed response related to the formation
of a long-lived resonance. In the energy domain, direct processes rule the energy-averaged
behaviour ofτ(E). Alternatively, strong fluctuations on the scale of the mean resonance
spacing1 are associated to quasibound states, and are, in turn, intimately linked to the
classical dynamics in the interaction region.

Our analysis deals with a specific model which illustrates very nicely the most important
properties of chaotic scattering and is well suited to study the Wigner–Smith time delay.
Some steps in our considerations take into account system specific properties. However,
our main results can be easily extended to other chaotic scattering potentials. Our model
consists of an irregularly shaped cavity (denoted byR in figure 1) attached to a pipe
(corresponding to the regionL). The boundary between the pipe (or ‘waveguide’) and the
cavity is arbitrarily chosen at the entrance of the cavity, atx = D (the regionR need not
necessarily be a billiard). The quantum propagation in the direction parallel to the pipe
axis is free. In the transversal direction there are quantized modesφc(y) of energyεc,
defining the scattering channelsc. At x = 0, with D chosen to be sufficiently large, the
wavefunctionψ(x, y;E) is expressed as a superposition of propagating modes

ψ(x, y;E) =
3∑
c=1

(
ace

ikcx −
3∑
c′=1

Scc′(E)ac′e
−ikcx

)
φc(y) (3)

with the wavenumberskc given by

h̄2

2m
k2
c = E − εc. (4)

From this equation it becomes evident that by choosing|k|D � 1 we ensure that no
evanescent mode survives atx = 0 and equation (3) is valid. All the information about the
scattering process is contained in the energy-dependent scattering matrixS(E).

For chaotic systems, we derive a formula which shows how to calculate the quantum
time delay using information about the classical orbits trapped inside the system. We further
explore this formula to compute time delay correlators, which show universal features. The
universal correlators typically scale with quantities such as the average dwell time inside

Figure 1. Schematic illustration of the scattering system under investigation. The ‘cavity’ region
is denoted byR and the attached waveguide byL.
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the system,τdwell, and the mean resonance spacing1 (also given in terms of the Heisenberg
time1 = 2πh̄/τH). We show that the universal curves obtained in the semiclassical theory
are in good agreement with the statistical theory of random matrices whenτH/τdwell� 1.

This paper is organised as follows. In section 2, a novel derivation of the quantum
time delay in terms of the underlying classical phase space of the repeller is presented.
Some applications of this formula are explored in section 3. The comparison with random
matrix theory is presented in section 4, where we also discuss the range of validity of the
correspondence between semiclassical and statistical theories. In section 5 we present the
conclusions of this study.

2. Wigner–Smith time delay and trapped periodic orbits

This section is devoted to the derivation of a semiclassical equation for the Wigner–
Smith time delay in terms of classical periodic orbits trapped inside the scattering region.
Our derivation relies on the association of theS-matrix with the quantum Poincaré map,
following closely the formalism developed by Bogomolny [10] for closed systems. A similar
result was previously obtained by Balian and Bloch [11], based on a construction proposed
by Friedel [12] for a separable system. The derivation presented below is more transparent
than the one in [11], making the approximations more controllable when dealing with actual
systems.

We begin by showing a simple construction relating the energy derivatives of two sets
of invariants of the3-channel scattering matrixS, namely the eigenphases{θ1, θ2, . . . , θ3}
and the traces{Tr Sn, n = 1, 2, . . .} (the construction remains valid for an arbitrary unitary
matrix depending on one parameter). For this purpose, let us consider the periodic function

F(θ) = θ mod 2π (5)

which has a Fourier expansion given by

F(θ) = π − 2
∞∑
n=1

sinnθ

n
. (6)

Summing over allS-matrix eigenphases in both sides of equation (6) and using Im TrSn =∑3
c=1 sinnθc we obtain

3∑
c=1

F(θc) = 3π − 2Im
∞∑
n=1

1

n
Tr Sn. (7)

The convenience of this arbitrary choice ofF becomes apparent after differentiating all
terms in (7) with respect to the energyE,

3∑
c=1

∂θc

∂E
= 2π

3∑
c=1

∂θc

∂E
δ(θc mod 2π)− 2 Im

∞∑
n=1

1

n

∂ Tr Sn

∂E
(8)

since by recalling (2) it is easy to identify the l.h.s. of the above expression with the Wigner–
Smith time delay. Equation (8) was first obtained by Bogomolny [10] and later rederived
by Rouvinez and Smilansky [13]. Those authors were interested in using the transfer (or
scattering matrix) approach to develop a quantization procedure for closed systems. The
ideas below are quite different, since we are interested in open systems. Indeed, we used the
closed system to understand the scattering problem, which is the reverse of the procedure
in [13, 14]. To this end, equation (8) only becomes useful after the following steps.

First, we shall consider the scattering matrixS (at the energyE) for the specific system
discussed in section 1. Far away from the cavity, atx = 0, the influence of the evanescent
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modes to the wavefunctions is negligible, since|kc|D � 1 (see figure 1). Therefore,
according to equation (3), the exact quantization condition for the system closed atx = 0,
becomes det(S − 1) = 0, as has already been observed [14]. In other words, one of the
eigenphases of theS-matrix must vanish

θc mod 2π = 0. (9)

With this quantization condition, the first term in the r.h.s. of equation (8) is now easily
identified with the density of states,ρL+R(E), of the system closed atx = 0. After proper
averaging over some energy interval,ρL+R(E) can be decomposed into a smooth and a
fluctuating part

3∑
c=1

∂θc

∂E
δ(θc mod 2π) = ρav

L+R(E)+ ρfl
L+R(E) (10)

whereL andR stand for the pipe and cavity regions respectively (see figure 1).
In this context, the matrixS is interpreted as thequantum Poincar´e mapof the closed

systemL+R associated with the section6P (x = 0+ in figure 1). The construction is quite
obvious, but for the sake of completeness let us be explicit: take an asymptotic incoming
wavefunction atx = 0+ and let it be scattered byR. As a result, one has a matrix that
matches the incoming asymptotic waves into the outgoing ones. This defines the quantum
return map forx = 0+ and it is also the definition of theS-matrix. In order to obtain the
Poincaŕe map, one still needs to describe what happens forx < 0−. This, however, is trivial,
sincex < 0− defines the asymptotic region (there is no coupling between channels) and the
corresponding Poincaré map is the identity matrix. For the geometry considered here, the
reflection by the hard wall is equivalent to the reinjection procedure, defining the so-called
Poincaŕe scatteringmap, originally proposed by Jung [15]. In this way, theS-matrix can
also be viewed as the quantization of the Poincaré scattering map. It is noteworthy that the
quantization condition defined by equation (9) has an interesting semiclassical counterpart.
For closed systems, the accuracy of the semiclassical quantization procedure based on a
Poincaŕe section requires the section to be traversed by all periodic orbits, such a condition
defining a ‘good’ section. If this is not the case, evanescent corrections become essential.
By closing the system sufficiently far away from the cavity region we ensure that the
evanescent contributions die out, making the exact quantum problem simpler.

Since theS-matrix can be obtained by the quantization of a classically chaotic map, in
the semiclassical approximation its traces can be expressed as a sum over periodic orbits.
Actually, the sum over the traces ofS in equation (8) results in an expression very similar
to the standard Gutzwiller trace formula [16] for the oscillatory part of the density of states
of the system defined byL+ R [13]. The important difference is that in our case the sum
is restricted to those periodic trajectoriesthat touch the section6P . Decomposing the full
set of periodic orbits of the systemL+R into a set that reaches6P and a set which never
leaves the cavityR, one can write

1

π
Im

∞∑
n=1

1

n

∂

∂E
Tr Sn ≈ ρfl

L+R(E)− ρfl
R(E) (11)

whereρfl
R(E) can be expressed in terms of periodic orbits constricted to the regionR.

Substituting the relations (10) and (11) into equation (8), we obtain

3

2πh̄
τ(E) ≈ ρav

L+R(E)+ ρfl
L+R(E)− (ρfl

L+R(E)− ρfl
R(E)) (12)
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yielding

τ(E) ≈ 2πh̄

3
(ρav
L+R(E)+ ρfl

R(E)). (13)

This is already very close to the expression we are looking for. The problem is thatτ is
measured with respect tox = 0 and we are interested in the time that the particle spends in
the cavity region, i.e. the time delay with respect tox = D. As a consequence, we still have
to translate the origin of coordinates to the entrance of the cavity. Under this operation, the
S-matrix transforms as

S(x ′) = e−ikDS(x)e−ikD (14)

wherex ′ = x − D and k is a diagonal matrix having thekc’s as elements. Taking into
account the fact that the time delay is additive with respect to the product of unitary
operators, namely,

Tr

(
(S1S2)

† d

dE
(S1S2)

)
= Tr

(
S
†
1

d

dE
S1

)
+ Tr

(
S
†
2

d

dE
S2

)
(15)

we arrive at

τ ′ = τ − 2h̄D

3

d

dE

3∑
c=1

kc. (16)

The second term on the r.h.s. of (16) is a smooth function of energy. It is proportional to
the density of states of the regionL (the pipe in figure 1),

2h̄D

3

d

dE

3∑
c=1

kc = 2D

3

3∑
c=1

1

vc
= 2πh̄

3
ρav
L (E). (17)

The first identity above says that under a spatial translation byD, the time delay varies by
the classical time it takes to travel to the point displaced byD and back, averaged over
the channels. The second identity is obtained by using the Weyl formula for the quasi-
one-dimensional density of states in a waveguide, expressed in terms of the longitudinal
velocitiesvc = h̄kc/m. Inserting (16) and (17) into (13), we obtain

τ ′ ≈ 2πh̄

3
(ρav
R (E)+ ρ f

R(E)). (18)

This is the main result of this section. The first term on the r.h.s. of equation (18) represents
the mean time spent in the cavity,〈τ 〉 = 2πh̄/(31) = τH/3, in agreement with Levinson’s
theorem (which holds irrespective of whether the underlying classical dynamics is chaotic
or not; see, for example [17]). The second term is given by [16]

τf l(E) ≈ 1

3

∑
νm

Tν(E)Aνm(E)e
imsν(E)/h̄−i π2µνm (19)

where the sum runs over the primitive periodic orbitsν which do not leave the cavityand
their mth repetitions. As usual, one needs from each periodic orbitν its periodTν , action
sν , Maslov indexµν , and the amplitudesAν given in terms of the monodromy matrixMν

[16],

Aνm = 1√| det(Mm
ν − 1)| . (20)

We base all considerations that follow on equation (19). One has to keep in mind that
equation (19) is a semiclassical result, sharing most of the usual limitations of the standard
trace formula for bound systems. It must be also emphasized that for the quantization of
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the bound systems, one is free to seek a Poincaré map which includes all the periodic orbits
(in our system this is the Birkhoff bounce map). Then, the r.h.s. of equation (11) is zero
and the ‘delay time’ for this map is just the smooth Weyl density of states as discussed
by Rouvinez and Smilansky [13]. The scattering map is predetermined in our case. This
is a chaotic, singular, discontinuous classical map because of its exclusion of the repeller,
which accounts for the fluctuations of the time delay. For this reason we cannot use the
time delay calculated directly from the semiclassical scattering map, reworking the theory
on the basis of the repeller.

3. Universal correlations in the quantum time delay

Here we apply the results of the last section to analyse the fluctuations of the time delay as
a function of energy. We study the crossover regime in which time reversal symmetry is
lost due to the presence of an external magnetic fieldB. Our derivation extends previous
results by Bohigaset al [18] (closed systems at the crossover regime), by Eckhardt [19]
(open systems with preserved time reversal symmetry) and by Fyodorov and Sommers [20]
(open systems with broken time reversal symmetry by an Aharonov–Bohm flux line). Our
presentation closely follows the discussion in [18].

A usual measure to characterize the time delay fluctuations is the correlation function

Kτ(ε, B) = 〈τf l(E + ε, B)τf l(E, B)〉E (21)

where〈. . .〉E stands for energy average. The semiclassical approach to the calculation of
this correlator begins by inserting (19) into (21) (the dependence of all quantities onB will
now remain implicit to simplify the notation):

Kτ(ε) = 1

32

∑
νmν ′m′

〈Tν(E + ε)Tν ′(E)Aνm(E + ε)A∗ν ′m′(E) (22)

× exp[imsν(E + ε)/h̄− iπµνm/2− im′sν ′(E)/h̄− iπµν ′m′/2]〉E. (23)

Here the average is taken over an energy intervalδE which, to be meaningful, must be
large as compared with the quantum scale1 in order to include many resonances. On the
other hand, for practical purposes,δE must be small enough to allow for the use of classical
perturbation theory. According to these considerations, the most important effect of varying
the energy is on the actions, as they are measured in units of ¯h. We write

s(E + ε) ≈ s(E)+ εT A(E + ε) ≈ A(E) and T (E + ε) ≈ T (E). (24)

To evaluateKτ(ε), we use the ‘diagonal approximation’, neglecting contributions of
pairs of orbits having distinct actions, as they cancel out upon averaging over energy. This
approximation is accurate for orbits with periods shorter than some critical value, whose
typical scale is the Heisenberg timeτH . We shall return to this point later.

For B = 0 only two kinds of pairs of orbits survive: the pairs of identical orbits
and the pairs of time-reversed partners. As the magnetic fieldB grows, the contribution
to the correlation function of time-reversed partners gradually decreases. Keeping both
contributions, we have

Kτ(ε) = 1

32

∑
νm

〈T 2
ν |Aνm|2eiεmTν/h̄[1+ eimδsν/h̄]〉E (25)

where δs ≡ δs(E,B) stands for the action difference between a pair of time-reversed
orbits. Next, we group orbits having periods in a small intervalδt aroundt (containing
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many orbits). This introduces a form of averaging procedure, defining smooth functions of
t . We then integrate over allt

Kτ (ε) = 1

32

∫ ∞
−∞

dt |t |eiεt/h̄〈〈|t |A2〉t 〈[1+ eiδs/h̄]〉t 〉E (26)

where we discarded the multiple repetitions|m| 6= 1, which are exponentially negligible
with respect to primitive orbits.

To evaluate the time average of the amplitudesA we use the sum rule for open chaotic
systems [21, 22]:

〈|t |A2〉t = e−γ (E)|t | (27)

where γ (E), the so-called escape rate, isγ = 1/τdwell, with τdwell defined in section 1.
Equation (27) has a simple physical interpretation: as we increase the period, periodic
orbits proliferate exponentially (with a rate given by the entropy) as their stability tend to
decrease also exponentially (the rate given by the sum of positive Lyapunov exponents).
For γ = 0, both effects cancel and one recovers the sum rule based on the uniformity
principle for closed systems [23]. For open systems the disbalance between the entropy and
Lyapunov exponents is just the escape rate resulting in (27) [24, 25].

The time average of the crossover term has been discussed in detail in [18]. Further
theoretical arguments [26] and numerical evidence [27] suggest the exponential decay

〈1+ eiδs/h̄〉t = 1+ e−B
2κ(E)|t |/h̄2

. (28)

Hereκ(E) is a purely classical quantity, which measures the rate of decay of the appropriate
correlations in the chaotic system. For more details see [18]. Identifyingγ (E) andκ(E)
with their mean values (the energy averaging interval is small) we write

Kτ(ε) =
∫ ∞
−∞

dt |t |eiεt/h̄−γ |t |(1+ e−B
2κ(E)|t |/h̄2

). (29)

This integral is easily evaluated, resulting in

Kτ(ω) = 1

2
〈τ 〉2

{
02− ω2

[02+ ω2]2
+ (0 + y)2− ω2

[(0 + y)2+ ω2]2

}
(30)

where, for the sake of future comparisons, we have defined

ω = πε/1 0 = πγh̄/1 y = B2κπ

h̄1
. (31)

WhenB = 0, we note that equation (30) reduces to the result obtained by Eckhardt [19]
for the time reversal symmetric case. Alternatively, puttingγ = 0 we recover the results
of [18] for the density–density correlator of the closed problem.

One of the most interesting properties of the semiclassical approximation toKτ(ω) is
that in this case we obtain an intrinsically more accurate result than the density–density
correlators for closed systems, that have been extensively semiclassically studied. The
reason is that the semiclassical approximation starts to fail for energy domains of the order of
the mean level spacing1, corresponding to times longer thanτH = 2πh̄/1, and such times
are normally unimportant for the computation ofKτ . The physics of the scattering problem
provides us with a natural cut-off for the summation over periodic orbits, which is given by
the typical escape time 1/γ , explicit in (27). Since the semiclassical theory is only applicable
if the waveguideL has many open channels, 1/γ must be much smaller than the Heisenberg
time τH , corresponding to the regime of strongly overlapping resonances. Although we do
not have a control over the magnitude of the accuracy, by increasing the number of open
channels in actual systems,Kτ(ω) converges to the semiclassical approximation (30).
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4. Comparison with the statistical approach

The statistical properties of the Wigner–Smith time delay for chaotic systems have been
also investigated by using the random matrix theory [28–31, 20]. In analogy with the
semiclassical approach, the statistical approach requires a decomposition of the Hilbert
space into an asymptotic regionL and a ‘complex’ scattering regionR, following the
notation of figure 1. As before, depending on the energyE, one will have3 propagating
channels in the pipe, labelled byc. By introducing arbitrary boundary conditions atx = D
one can define a set of quasibound states|µ〉 in regionR and a set of scattering states
|χc(E)〉 in L. These states form a complete setQ + P = 1, with Q = ∑

µ |µ〉〈µ| and
P =∑c

∫
dE |χc(E)〉〈χc(E)|. Thus, the Hamiltonian is given by

H = QHQ+ PHP +QHP + PHQ ≡ HQQ +HPP +HPQ +HQP (32)

whereHQQ is interpreted as an ‘internal’ Hamiltonian, andHPQ (HQP ) are the couplings
between the interiorR and the channel regionL . After some algebra, one can show [32, 17]
that the resonantS-matrix can be written as

S = I − 2π iHPQ
1

E −HQQ + iπHQPHPQ
HQP (33)

in the absence of direct reactions, implying thatHPP is diagonal. The decomposition of
the Hilbert space in projectorsP andQ can, in principle, be employed for a large variety
of problems, which makes equation (33) a very useful parametrization of theS-matrix. It
follows that the Wigner–Smith time delay is given by [20]

τ(E) = − 2

3
Im Tr(E −HQQ + iπHQPHPQ)

−1. (34)

This expression is akin to the one obtained semiclassically (18), as it should be. Hereτ(E)

is equated to the level density of the ‘closed’ system, defined by the operatorQ (which is
quite arbitrary) and smoothed by the coupling to the exterior world by the imaginary term
in (34). Although conceptually similar to equation (18), it is not a simple task to arrive at
the semiclassical expression starting from equation (34).

Since one expects signatures of chaos in scattering processes to be manifest for times
much longer than the typical traversal time, we focus our attention only in the resonant part
of S. This is the physical justification for neglecting direct (fast) reactions in equation (33).
Moreover, the object which is responsible for classical chaos in scattering is the repeller,
implying that chaos is a property of the ‘internal’ Hamiltonian. Therefore, in analogy with
Bohigas’ conjecture [33] for closed systems, a statistical modelling of quantum chaos in
open systems can be made by takingHQQ as a member of an ensemble of random matrices
[17]. For instance, for preserved time-reversal symmetryHQQ belongs to the Gaussian
orthogonal ensemble (GOE) and for broken time-reversal symmetry to the Gaussian unitary
ensemble (GUE). This conjecture allows us to study universal fluctuations in scattering
processes by calculatingS-matrix correlation functions. Those are obtained by ensemble
averaging, which is equivalent to an energy averaging based on the ergodic hypothesis.

In particular, the calculation of the two-point time delay correlation functionKτ(ε, Y ),
studied in the previous section, requires the evaluation of

Kτ(ε, Y ) = 2

32
Re

{
Tr g

(
E + ε

2
, Y
)

Tr g†
(
E − ε

2
, Y
)
− Tr g(E, Y )

2
}

(35)

whereO denotes the ensemble average ofO and

g(E, Y ) = (E −HQQ(Y )+ iπHQPHPQ)
−1 (36)
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with the variableY parametrizing changes in the internal Hamiltonian. For instance, ifY

stands for an external magnetic fieldB, one can studyKτ(ε, Y ) in the crossover regime
between preserved and broken time reversal symmetry by choosingHQQ = HGOE+YHGUE.
The results are universal in terms of the scaled variabley = Y/Yc, whereYc is system
specific.

From a technical point of view, the ensemble average in equation (35) implies a
nontrivial calculation based on the supersymmetric technique developed by Efetov [34]. This
technique was adapted to scattering problems by the Heidelberg group [35, 36], and is the
starting point of all works that use the statistical approach to study the time delay correlation
function [31, 37, 20] and related objects [38]. A discussion of the supersymmetric technique
is beyond the scope of this paper and we refer the reader to the excellent introductory text
in [39], and to theS-matrix review in [20].

Let us start with the simplest case,Kτ(ω, y � 1) for broken time-reversal symmetry,
corresponding to takingHQQ as a member of the GUE. The result, given as usual in terms
of a double integral, can be found in [20]

KGUE
τ (ω) = 〈τ 〉

2

2

∫ 1

−1
dλ
∫ ∞

1
dλ1 cos(ω(λ1− λ))

3∏
c=1

(
2+ Tc(λ− 1)

2+ Tc(λ1− 1)

)
(37)

where the transmission coefficientTc gives the probability of an incoming wave at the
channelc in the vicinity of x = D to enter the scattering regionR. In order to compare
with the semiclassical theory, one has to takeTc = 1 for all channelsc, since this theory
does not take into account any barriers preventing perfect transmission. Thus, keeping the
notation introduced in section 3 and identifying〈τ 〉 = 1/γ , the leading asymptotic term in
powers of0−1 of equation (37) becomes

KGUE
τ (ω) ≈ 〈τ 〉

2

2

02− ω2

[02+ ω2]2
(38)

in nice agreement with the semiclassical result. In figure 2 we presentKGUE
τ as a function

of the number of open channels3. As 3 increases, the agreement with the semiclassical
theory becomes much better, as shown in the inset of figure 2. Even for relatively small3,
the exact result does not differ significantly from the semiclassical one. This is explained
by the fact that one can show that the next to leading-order correction is smaller by a factor
02.

The other simple limit is the case where time reversal symmetry is present, corresponding
to HQQ taken as a member of the GOE. Here the result is [31]

KGOE
τ (ω) = 〈τ 〉

2

4

∫ 1

0
dλ
∫ ∞

0
dλ1

∫ ∞
0

dλ2µ(λ, λ1, λ2)(2λ+ λ1+ λ2)
2 (39)

× cos(ω(2λ+ λ1+ λ2))
∏
c

(
(1− Tcλ)2

(1+ Tcλ1)(1+ Tcλ2)

)1/2

(40)

with the measureµ given by

µ(λ, λ1, λ2) = (1− λ)λ|λ1− λ2|
[(1+ λ1)λ1(1+ λ2)λ2]1/2(λ+ λ1)2(λ+ λ2)2

. (41)

In this case, even takingTc = 1 for all c’s the integral is still difficult. However, we can
use a trick introduced by Efetov [34] or the asymptotic expansion proposed by Verbaarschot
[36] to obtain

KGOE
τ (ω) ≈ 〈τ 〉2 02− ω2

[02+ ω2]2
(42)
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Figure 2. Comparison between the semiclassical (full lines) and the exact random matrix
results for the time delay correlator (case where time-reversal symmetry is absent). We plot the
normalized correlatorsK∗τ = 202Kτ/〈τ 〉2 versus the normalized energyω/0. Different line
styles indicate the different number of open channels; broken, chained, and dotted correspond to
3 = 3, 5, 10, respectively. The inset shows the difference between random matrix results and
semiclassics.

again in nice agreement with the semiclassical result. Here, higher-order corrections are
smaller only by a factor0. This is manifest in figure 3, where one can see that the GUE
case converges faster than the GOE to the semiclassical result.

For the crossover regime the supersymmetric expressions become even more
complicated. By performing a calculation similar to that done by Pluhař et al [40], Fyodorov
et al [37] obtained a closed expression forKτ , first numerically studied in [41] as the ballistic
limit of electronic mesoscopic transmission. The leading asymptotic term in inverse powers
of 0 is

Kτ(ω, y) = 〈τ 〉
2

2

(
02− ω2

[02+ ω2]2
+ (0 + y)2− ω2

[(0 + y)2+ ω2]2

)
(43)

identical to the semiclassical result equation (30).
The strength of the statistical method is in dealing with situations beyond the scope

of the semiclassical theory, either by analysing situations where3 is small, or by treating
systems where the scattering waves have to overcome barriers. In the latter case, the
semiclassical analysis needs some refinements. Equally or more problematic is the fact that
when

∑
Tc < 1, the resonances become isolated. This calls for a semiclassical theory that

deals with times larger thanτH .
This is a good point to refocus the attention to one issue in the literature (see for instance

[25]) that is often confusing. The ensemble average is performed for a fixed number of
channels and many resonances between channel thresholds. The accuracy of the statistical
approach increases as the number of resonances increase. With such a construction it is not
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Figure 3. Comparison between the semiclassical (full lines) and the exact random matrix results
for the time delay correlator (case of preserved time-reversal symmetry). We plot the normalized
correlatorsK∗τ = 02Kτ/〈τ 〉2 versus the normalized energyω/0. Different line styles indicate
the different number of open channels; broken, chain, and dotted correspond to3 = 3, 5, 10,
respectively. The inset shows the difference between random matrix results and semiclassics.

possible to use this theory to statistically analyse theS-matrix of a system like the three-disc
problem, since between channel thresholds there are very few resonances, explaining the
disagreement in [25]. However, since one takes the trace over the channels to obtain the
Wigner–Smith time delay, provided3 � 1, a small change in3 seems not to affectKτ ,
as observed in [19].

5. Conclusions

In this paper we presented a semiclassical derivation of the formula connecting the Wigner–
Smith time-delayτ to the resonance density of the scattering region, corresponding to a
chaotic system. We showed thatτ can be written as a sum over the periodic orbits inside
the repeller. The physical interpretation of this relation is that the repeller is responsible for
the time spent in the cavity by the scattering trajectories. An open trajectory that closely
approximates a periodic one, can spend a long time in the scattering region. This dwell
time essentially depends on the stability of the periodic trajectory that is approached. As a
result, the typical classical dwell time depends on few bulk characteristics of the scattering
system. The interesting achievement of the semiclassical theory is that it is possible to
write scattering observables in terms of classical trajectories that never leave the system.
Doing so, one avoids all problems inherent of a semiclassical formulation in terms of open
trajectories.

One of the striking features of the semiclassical approximation for a scattering system
is its accuracy. In distinction to the usual studies of density–density correlators in closed
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systems, here one has no need to account for times of the order ofτH , the timescale where
the semiclassical approach starts failing. Trajectories entering an open chaotic system cannot
typically stay inside the scattering region for times much longer than〈τ 〉. This fact provides
us with a natural cut-off for any semiclassical summation formula, namely〈τ 〉 itself. If we
assume that convergence is the only problem of the semiclassical formalism, systems with
increasing numbers of open channels will be described by the semiclassical theory with
increasing precision as compared with the exact theory.

Although we already know the exact statistical result for several correlators and
distributions involving the Wigner–Smith time delay, such an approach, by construction,
does not have information about nonuniversal quantities (such as1, Yc, etc). Those are
usually extracted from the experiment. The point of this paper is that this information is
usually available from the classical dynamics and the semiclassical approach can always be
adapted to give a method to compute the nonuniversal scaling factors. In summary, even
if the semiclassical theory cannot compete in accuracy, it can be used as a complement to
the statistical approach.
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by the Centro Latino Americano de Fı́sica (CLAF), and by the Fundac¸ão de Amparoà
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Brouwer P W, van Langen S A, Frahm K M, Büttiker M and Beenakker C W 1997Phys. Rev. Lett.79 913

[7] Doron E, Smilansky U and Frenkel A 1990Phys. Rev. Lett.65 3072
[8] Lewenkopf C H, M̈uller A and Doron E 1992Phys. Rev.A 45 2635
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