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Abstract. We study the universal fluctuations of the Wigner—Smith time delay for systems
which exhibit chaotic dynamics in their classical limit. We present a new derivation of the
semiclassical relation of the quantum time delay to properties of the set of trapped periodic
orbits in the repeller. As an application, we calculate the energy correlator in the crossover
regime between preserved and fully broken time reversal symmetry. We discuss the range of
validity of our results and compare them with the predictions of random matrix theories.

1. Introduction

Over the past decade many studies have been devoted to the understanding of quantum
manifestations of classical chaos. This interest can be explained by the fact that this subject
has applications in many different areas of physics, such as properties of complex systems,
fundamental aspects of the correspondence principle, transport in ballistic mesoscopic
cavities, etc. Most of the theoretical studies have concentrated on spectral properties
of closed systems, accumulating a large body of numerical evidence of universality and
some analytical understanding of this fact. Comparatively few studies have heretofore been
devoted to open systems, and the scattering problem still lacks some solid fingerprints which
serve to clearly distinguish integrable from chaotic classical scattering. For this reason, it
is desirable to study an observable which bridges the well-understood quantum aspects of
closed chaotic systems and the still unclear features of open ones. The Wigner—-Smith time
delay [1, 2] is such an object, since it is intimately related to the level (or resonance) density
of the system and it is a genuine scattering observable. This study deals with the universal
features of the time delay common to all chaotic scattering systems.

The concept of time delay in quantum scattering was first considered by Eisenbud [3]
and Wigner [1] in the context of one-channel scattering. Later, Smith [2] extended the
previous discussions to the many-channel problem by introducing the lifetime matrix

A
. d
Qup(E) = ~ihi ) _ Suc(E) 5= 54,(E) (1)
c=1

wheres is the standard scattering matrix and the sum runs ovet alpen channels denoted
by ¢. By averaging over the eigenvalues @f one arrives at the so-called Wigner—Smith
time delay

in d in d
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which is then interpreted as the typical time spent by the particle in the interaction region.
Even though this interpretation has some limitations in the case of wavepacket scattering
[4], no difficulties arise when the incoming wave can be considered monoenergetic, a
common situation, for example, in applications to mesoscopic transport phenomena [5, 6]
and microwave cavity experiments [7-9].

In general, one can distinguish two regimes associated with a scattering process: a fast
response (correspondingdirect processes) and a delayed response related to the formation
of a long-lived resonance. In the energy domain, direct processes rule the energy-averaged
behaviour oft(E). Alternatively, strong fluctuations on the scale of the mean resonance
spacingA are associated to quasibound states, and are, in turn, intimately linked to the
classical dynamics in the interaction region.

Our analysis deals with a specific model which illustrates very nicely the most important
properties of chaotic scattering and is well suited to study the Wigner—-Smith time delay.
Some steps in our considerations take into account system specific properties. However,
our main results can be easily extended to other chaotic scattering potentials. Our model
consists of an irregularly shaped cavity (denoted myin figure 1) attached to a pipe
(corresponding to the regioh). The boundary between the pipe (or ‘waveguide’) and the
cavity is arbitrarily chosen at the entrance of the cavityy at D (the regionR need not
necessarily be a billiard). The quantum propagation in the direction parallel to the pipe
axis is free. In the transversal direction there are quantized m¢des of energye,,
defining the scattering channets At x = 0, with D chosen to be sufficiently large, the
wavefunctiony (x, y; E) is expressed as a superposition of propagating modes

A A
Y,y E) =) (acé""x -3 Sccf(E)acfe”““>¢c(y) 3
c=1 =1
with the wavenumberg. given by
EZ
gkf =E —¢. 4

From this equation it becomes evident that by choosii@® > 1 we ensure that no
evanescent mode survivesaat 0 and equation (3) is valid. All the information about the
scattering process is contained in the energy-dependent scattering Sidtpix

For chaotic systems, we derive a formula which shows how to calculate the quantum
time delay using information about the classical orbits trapped inside the system. We further
explore this formula to compute time delay correlators, which show universal features. The
universal correlators typically scale with quantities such as the average dwell time inside

x=0

Figure 1. Schematic illustration of the scattering system under investigation. The ‘cavity’ region
is denoted byR and the attached waveguide hy
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the systemzqwern, and the mean resonance spacingalso given in terms of the Heisenberg
time A = 277 /74). We show that the universal curves obtained in the semiclassical theory
are in good agreement with the statistical theory of random matrices whegten > 1.

This paper is organised as follows. In section 2, a novel derivation of the quantum
time delay in terms of the underlying classical phase space of the repeller is presented.
Some applications of this formula are explored in section 3. The comparison with random
matrix theory is presented in section 4, where we also discuss the range of validity of the
correspondence between semiclassical and statistical theories. In section 5 we present the
conclusions of this study.

2. Wigner—Smith time delay and trapped periodic orbits

This section is devoted to the derivation of a semiclassical equation for the Wigner—
Smith time delay in terms of classical periodic orbits trapped inside the scattering region.
Our derivation relies on the association of thiamatrix with the quantum Poincarmap,
following closely the formalism developed by Bogomolny [10] for closed systems. A similar
result was previously obtained by Balian and Bloch [11], based on a construction proposed
by Friedel [12] for a separable system. The derivation presented below is more transparent
than the one in [11], making the approximations more controllable when dealing with actual
systems.

We begin by showing a simple construction relating the energy derivatives of two sets
of invariants of theA-channel scattering matri%, namely the eigenphasé®, 6, ..., 0}
and the trace$TrS", n =1, 2,...} (the construction remains valid for an arbitrary unitary
matrix depending on one parameter). For this purpose, let us consider the periodic function

F(0) = 6 mod 2r (5)
which has a Fourier expansion given by

FO)=m—-2) S'r;"e. (6)
n=1

Summing over allS-matrix eigenphases in both sides of equation (6) and using I Fr
S°A | sinnd, we obtain

A 00 1
Y F(0.)=Ar—2m) =Trs". (7)
c=1 n=1 n
The convenience of this arbitrary choice Bf becomes apparent after differentiating all
terms in (7) with respect to the enerdy,

A A o n

3 90 _ ZnZ%S(GCmOdZU) _om oS

= JIE o JIE —n oE
since by recalling (2) it is easy to identify the I.h.s. of the above expression with the Wigner—
Smith time delay. Equation (8) was first obtained by Bogomolny [10] and later rederived
by Rouvinez and Smilansky [13]. Those authors were interested in using the transfer (or
scattering matrix) approach to develop a quantization procedure for closed systems. The
ideas below are quite different, since we are interested in open systems. Indeed, we used the
closed system to understand the scattering problem, which is the reverse of the procedure
in [13, 14]. To this end, equation (8) only becomes useful after the following steps.

First, we shall consider the scattering matiXat the energy£) for the specific system

discussed in section 1. Far away from the cavityy at 0, the influence of the evanescent

®)
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modes to the wavefunctions is negligible, singg|D > 1 (see figure 1). Therefore,
according to equation (3), the exact quantization condition for the system closeg &t
becomes déf — 1) = 0, as has already been observed [14]. In other words, one of the
eigenphases of th&-matrix must vanish

6. mod 27 = 0. 9

With this quantization condition, the first term in the r.h.s. of equation (8) is now easily
identified with the density of statep, ., z(E), of the system closed at= 0. After proper
averaging over some energy interval,, z(E) can be decomposed into a smooth and a
fluctuating part

A

20,
Y 5g00cmod2r) = pit p(E) + pl, 4 (E) (10)
c=1

where L and R stand for the pipe and cavity regions respectively (see figure 1).

In this context, the matri¥ is interpreted as thquantum Poincag ' mapof the closed
systemL + R associated with the sectidhp (x = 0" in figure 1). The construction is quite
obvious, but for the sake of completeness let us be explicit: take an asymptotic incoming
wavefunction atc = Ot and let it be scattered bg. As a result, one has a matrix that
matches the incoming asymptotic waves into the outgoing ones. This defines the quantum
return map forx = 0™ and it is also the definition of th&-matrix. In order to obtain the
Poincaé map, one still needs to describe what happens fer0—. This, however, is trivial,
sincex < 0~ defines the asymptotic region (there is no coupling between channels) and the
corresponding Poincarmap is the identity matrix. For the geometry considered here, the
reflection by the hard wall is equivalent to the reinjection procedure, defining the so-called
Poincaé scatteringmap, originally proposed by Jung [15]. In this way, thienatrix can
also be viewed as the quantization of the Poiaarattering map. It is noteworthy that the
guantization condition defined by equation (9) has an interesting semiclassical counterpart.
For closed systems, the accuracy of the semiclassical quantization procedure based on a
Poincaé section requires the section to be traversed by all periodic orbits, such a condition
defining a ‘good’ section. If this is not the case, evanescent corrections become essential.
By closing the system sufficiently far away from the cavity region we ensure that the
evanescent contributions die out, making the exact quantum problem simpler.

Since theS-matrix can be obtained by the quantization of a classically chaotic map, in
the semiclassical approximation its traces can be expressed as a sum over periodic orbits.
Actually, the sum over the traces §fin equation (8) results in an expression very similar
to the standard Gutzwiller trace formula [16] for the oscillatory part of the density of states
of the system defined b + R [13]. The important difference is that in our case the sum
is restricted to those periodic trajectorigmat touch the sectioX . Decomposing the full
set of periodic orbits of the systefm+ R into a set that reaches, and a set which never
leaves the cavity?, one can write

Lim i 19 o ol L (E) — ph(E) (11)

T —n o0E L+k R

wherepﬂ(E) can be expressed in terms of periodic orbits constricted to the region
Substituting the relations (10) and (11) into equation (8), we obtain

A
5T ~ ol (E) + prR(E) — (0}, g(E) — pR(E)) (12)
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yielding

2nh
1(E) ~ %(pmw) + p(E)). (13)

This is already very close to the expression we are looking for. The problem is tisat
measured with respect to= 0 and we are interested in the time that the particle spends in
the cavity region, i.e. the time delay with respeckte- D. As a consequence, we still have

to translate the origin of coordinates to the entrance of the cavity. Under this operation, the
S-matrix transforms as

S(x) = e kP g(x)e kP (14)

wherex’ = x — D and k is a diagonal matrix having the.’'s as elements. Taking into
account the fact that the time delay is additive with respect to the product of unitary
operators, namely,

d . d d
T — i i
Tr ((Slsz) dE (S152)> Tr (Sl dE Sl> +Tr (52 dE SZ> (15)
we arrive at
2D d &
=7 — —— . 1
T T T ;lq (16)

The second term on the r.h.s. of (16) is a smooth function of energy. It is proportional to
the density of states of the regidn(the pipe in figure 1),

2hD d & 2D &1 27k,
A dE;kc_ A;vc_ A PLE) (17
The first identity above says that under a spatial translatio® pthe time delay varies by

the classical time it takes to travel to the point displacedlbynd back, averaged over

the channels. The second identity is obtained by using the Weyl formula for the quasi-
one-dimensional density of states in a waveguide, expressed in terms of the longitudinal
velocitiesv. = hk./m. Inserting (16) and (17) into (13), we obtain

2h
o'~ S (0R(E) + ph(E). (18)

This is the main result of this section. The first term on the r.h.s. of equation (18) represents
the mean time spent in the cavitlt,) = 27h/(AA) = /A, in agreement with Levinson’s
theorem (which holds irrespective of whether the underlying classical dynamics is chaotic
or not; see, for example [17]). The second term is given by [16]

: 1 . S
fl ~ o ms, (E)/h—=i5% tom

(B~ < ;ME)AW(E)é : e (19)
where the sum runs over the primitive periodic orhitsvhich do not leave the cavitgnd
their mth repetitions. As usual, one needs from each periodic orli$ periodT,, action
sy, Maslov indexu,, and the amplituded, given in terms of the monodromy matrid,
[16],

1
Avm = T (20)
| det(M — 1)

We base all considerations that follow on equation (19). One has to keep in mind that
equation (19) is a semiclassical result, sharing most of the usual limitations of the standard
trace formula for bound systems. It must be also emphasized that for the quantization of
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the bound systems, one is free to seek a Poo@p which includes all the periodic orbits

(in our system this is the Birkhoff bounce map). Then, the r.h.s. of equation (11) is zero

and the ‘delay time’ for this map is just the smooth Weyl density of states as discussed
by Rouvinez and Smilansky [13]. The scattering map is predetermined in our case. This
is a chaotic, singular, discontinuous classical map because of its exclusion of the repeller,
which accounts for the fluctuations of the time delay. For this reason we cannot use the
time delay calculated directly from the semiclassical scattering map, reworking the theory
on the basis of the repeller.

3. Universal correlations in the quantum time delay

Here we apply the results of the last section to analyse the fluctuations of the time delay as
a function of energy. We study the crossover regime in which time reversal symmetry is
lost due to the presence of an external magnetic fieldOur derivation extends previous
results by Bohiga®t al [18] (closed systems at the crossover regime), by Eckhardt [19]
(open systems with preserved time reversal symmetry) and by Fyodorov and Sommers [20]
(open systems with broken time reversal symmetry by an Aharonov—Bohm flux line). Our
presentation closely follows the discussion in [18].

A usual measure to characterize the time delay fluctuations is the correlation function

K.(¢, B) = (t//(E + ¢, B)t//(E, B))g (21)

where(...)g stands for energy average. The semiclassical approach to the calculation of
this correlator begins by inserting (19) into (21) (the dependence of all quantitiBsveilh
now remain implicit to simplify the notation):

K:(¢e) = % Z (TW(E + &)Ty(E)Aun(E + €) A3, (E) (22)
x explims, (E + &)/h — 7y /2 — im'sy (E)/R — iy /2] E. (23)

Here the average is taken over an energy intef\@lwhich, to be meaningful, must be
large as compared with the quantum scalén order to include many resonances. On the
other hand, for practical purposésd; must be small enough to allow for the use of classical
perturbation theory. According to these considerations, the most important effect of varying
the energy is on the actions, as they are measured in units \&e write

S(E+¢)~s(E)+eT A(E +¢) ~ A(E) and T(E +¢) ~T(E). (24)

To evaluatek,(¢), we use the ‘diagonal approximation’, neglecting contributions of
pairs of orbits having distinct actions, as they cancel out upon averaging over energy. This
approximation is accurate for orbits with periods shorter than some critical value, whose
typical scale is the Heisenberg timg. We shall return to this point later.

For B = 0 only two kinds of pairs of orbits survive: the pairs of identical orbits
and the pairs of time-reversed partners. As the magnetic Betsffows, the contribution
to the correlation function of time-reversed partners gradually decreases. Keeping both
contributions, we have

1 . _ ) _
Ke(e) = — D (T2 A [P TL 4 @mon/i]) (25)

where §s = &s(E, B) stands for the action difference between a pair of time-reversed
orbits. Next, we group orbits having periods in a small intef&sabroundz (containing
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many orbits). This introduces a form of averaging procedure, defining smooth functions of
t. We then integrate over all

1 [ ) )
Ke(e) = / dr [11€5 (1] A%) ([1 + €5/7),) (26)

where we discarded the multiple repetitioms| # 1, which are exponentially negligible
with respect to primitive orbits.

To evaluate the time average of the amplitudewe use the sum rule for open chaotic
systems [21, 22]:

(It] A?%), = 77BN (27)

where y (E), the so-called escape rate, ys= 1/tgwen, With tgwen defined in section 1.
Equation (27) has a simple physical interpretation: as we increase the period, periodic
orbits proliferate exponentially (with a rate given by the entropy) as their stability tend to
decrease also exponentially (the rate given by the sum of positive Lyapunov exponents).
For y = 0, both effects cancel and one recovers the sum rule based on the uniformity
principle for closed systems [23]. For open systems the disbalance between the entropy and
Lyapunov exponents is just the escape rate resulting in (27) [24, 25].

The time average of the crossover term has been discussed in detail in [18]. Further
theoretical arguments [26] and numerical evidence [27] suggest the exponential decay

(1+ &5y, = 14 e BHEN/R (28)

Herex (E) is a purely classical quantity, which measures the rate of decay of the appropriate
correlations in the chaotic system. For more details see [18]. Identifyii) and« (E)
with their mean values (the energy averaging interval is small) we write

K,(g):/ dr |z|€e/FrIl (1 4 g BAENNI/Ry (29)

This integral is easily evaluated, resulting in

1 2 — 2 (T +y)? — w?
K. () = =(1)? 30
@ =3 o * ) )
where, for the sake of future comparisons, we have defined
_ B?
w=m¢e/A ' =nyh/A y = EZH' (31)

When B = 0, we note that equation (30) reduces to the result obtained by Eckhardt [19]
for the time reversal symmetric case. Alternatively, putting= O we recover the results
of [18] for the density—density correlator of the closed problem.

One of the most interesting properties of the semiclassical approximati&n (to) is
that in this case we obtain an intrinsically more accurate result than the density—density
correlators for closed systems, that have been extensively semiclassically studied. The
reason is that the semiclassical approximation starts to fail for energy domains of the order of
the mean level spacing, corresponding to times longer thag = 277 /A, and such times
are normally unimportant for the computation &f. The physics of the scattering problem
provides us with a natural cut-off for the summation over periodic orbits, which is given by
the typical escape time/%, explicitin (27). Since the semiclassical theory is only applicable
if the waveguidel. has many open channelg,Amust be much smaller than the Heisenberg
time ty, corresponding to the regime of strongly overlapping resonances. Although we do
not have a control over the magnitude of the accuracy, by increasing the number of open
channels in actual systemk, (w) converges to the semiclassical approximation (30).
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4. Comparison with the statistical approach

The statistical properties of the Wigner—Smith time delay for chaotic systems have been
also investigated by using the random matrix theory [28-31,20]. In analogy with the
semiclassical approach, the statistical approach requires a decomposition of the Hilbert
space into an asymptotic regiah and a ‘complex’ scattering regio®, following the
notation of figure 1. As before, depending on the enefgyne will haveA propagating
channels in the pipe, labelled lay By introducing arbitrary boundary conditions.at= D

one can define a set of quasibound stdiesin region R and a set of scattering states
|x.(E)) in L. These states form a complete g@t+ P = 1, with Q0 = ZM [w){u| and

P =3, [dE |x.(E)){x.(E)|. Thus, the Hamiltonian is given by

H=QHQ+PHP+ QHP+PHQ=Hpy+ Hpp+ Hpo + Hyp (32)

where Hy is interpreted as an ‘internal’ Hamiltonian, a#fh, (Hgp) are the couplings
between the interioR and the channel regioh . After some algebra, one can show [32, 17]
that the resonanf-matrix can be written as
. 1
27T|HPQ - H
E — HQQ + IJTHQPHPQ

in the absence of direct reactions, implying thfét is diagonal. The decomposition of
the Hilbert space in projectorB and Q can, in principle, be employed for a large variety
of problems, which makes equation (33) a very useful parametrization of-thatrix. It
follows that the Wigner—Smith time delay is given by [20]

S=1-

(33)

2 .
'L'(E) = —K|m TI’(E — HQQ =+ |7THQPHPQ)71. (34)

This expression is akin to the one obtained semiclassically (18), as it should ber (#igre

is equated to the level density of the ‘closed’ system, defined by the op&Pafahich is
quite arbitrary) and smoothed by the coupling to the exterior world by the imaginary term
in (34). Although conceptually similar to equation (18), it is not a simple task to arrive at
the semiclassical expression starting from equation (34).

Since one expects signatures of chaos in scattering processes to be manifest for times
much longer than the typical traversal time, we focus our attention only in the resonant part
of S. This is the physical justification for neglecting direct (fast) reactions in equation (33).
Moreover, the object which is responsible for classical chaos in scattering is the repeller,
implying that chaos is a property of the ‘internal’ Hamiltonian. Therefore, in analogy with
Bohigas’ conjecture [33] for closed systems, a statistical modelling of quantum chaos in
open systems can be made by takitig, as a member of an ensemble of random matrices
[17]. For instance, for preserved time-reversal symméiyy, belongs to the Gaussian
orthogonal ensemble (GOE) and for broken time-reversal symmetry to the Gaussian unitary
ensemble (GUE). This conjecture allows us to study universal fluctuations in scattering
processes by calculatingrmatrix correlation functions. Those are obtained by ensemble
averaging, which is equivalent to an energy averaging based on the ergodic hypothesis.

In particular, the calculation of the two-point time delay correlation funcfienie, Y),
studied in the previous section, requires the evaluation of

2 .
K:(e.Y) = —Re {Trg (E + g Y) Trgl (E — g Y) _Tre(E, Y)2} (35)

where© denotes the ensemble averageZband
g(E,Y)= (E_HQQ(Y)+i7THQPHPQ)_l (36)
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with the variableY parametrizing changes in the internal Hamiltonian. For instanckg, if
stands for an external magnetic fieRl one can studyk, (e, Y) in the crossover regime
between preserved and broken time reversal symmetry by choHsipg= HC°F+Y HCUE,
The results are universal in terms of the scaled variable Y/Y., whereY, is system
specific.

From a technical point of view, the ensemble average in equation (35) implies a
nontrivial calculation based on the supersymmetric technique developed by Efetov [34]. This
technique was adapted to scattering problems by the Heidelberg group [35, 36], and is the
starting point of all works that use the statistical approach to study the time delay correlation
function [31, 37, 20] and related objects [38]. A discussion of the supersymmetric technique
is beyond the scope of this paper and we refer the reader to the excellent introductory text
in [39], and to theS-matrix review in [20].

Let us start with the simplest cask, (w, y > 1) for broken time-reversal symmetry,
corresponding to takin@,, as a member of the GUE. The result, given as usual in terms
of a double integral, can be found in [20]

(r)?

1 00 A _
KIGUE(Q)) = T/ dk/ iy COSw(hy — 1)) ( 24+ T.(0.—1) )
_1 1 ;

-1 2+ TC()\']. - 1)

where the transmission coefficieffit gives the probability of an incoming wave at the
channelc in the vicinity of x = D to enter the scattering regiaR. In order to compare
with the semiclassical theory, one has to tdke= 1 for all channels:, since this theory
does not take into account any barriers preventing perfect transmission. Thus, keeping the
notation introduced in section 3 and identifyifig) = 1/y, the leading asymptotic term in
powers of "~ of equation (37) becomes
('L'>2 1"2 _ (,()2

2 [I2+ 0?2
in nice agreement with the semiclassical result. In figure 2 we praggHE as a function
of the number of open channels. As A increases, the agreement with the semiclassical
theory becomes much better, as shown in the inset of figure 2. Even for relativelysmall
the exact result does not differ significantly from the semiclassical one. This is explained
by the fact that one can show that the next to leading-order correction is smaller by a factor
2.

The other simple limit is the case where time reversal symmetry is present, corresponding

to Hyo taken as a member of the GOE. Here the result is [31]

(37)

K% (w) ~ (38)

2 1 [ee) o0
KE% () = % / dx / diq / dho (h, A1, A2)(2h 4 A1 + A2)? (39)
0 0 0
(1—T.0)? )1/ 2
co 20+ A+ A 40
X COS(h+ At 22)) H ((1+ To A+ Tohy) (40)
with the measure:. given by
1— MAlAr— A
1Ok g o) = e S ] (41)

(A4 2DA1 (1 + 22)A2]Y2(h + 11)2(A + 12)2
In this case, even taking. = 1 for all ¢’s the integral is still difficult. However, we can

use a trick introduced by Efetov [34] or the asymptotic expansion proposed by Verbaarschot
[36] to obtain

) 1"2 _ (1)2

KE%(w) ~ (1) M2+ o2

(42)
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i i " L " i L " i 2 1 1 L

Figure 2. Comparison between the semiclassical (full lines) and the exact random matrix
results for the time delay correlator (case where time-reversal symmetry is absent). We plot the
normalized correlatork = 22K, /(t)? versus the normalized energy/ . Different line

styles indicate the different number of open channels; broken, chained, and dotted correspond to
A = 3,5,10, respectively. The inset shows the difference between random matrix results and
semiclassics.

again in nice agreement with the semiclassical result. Here, higher-order corrections are
smaller only by a factof". This is manifest in figure 3, where one can see that the GUE
case converges faster than the GOE to the semiclassical result.

For the crossover regime the supersymmetric expressions become even more
complicated. By performing a calculation similar to that done by Hehal [40], Fyodorov
et al [37] obtained a closed expression %, first numerically studied in [41] as the ballistic
limit of electronic mesoscopic transmission. The leading asymptotic term in inverse powers
of I is

(r)2< 2 — @? (T + y)? — 0? >

K=o \rrre [T+ 2t ot

identical to the semiclassical result equation (30).

The strength of the statistical method is in dealing with situations beyond the scope
of the semiclassical theory, either by analysing situations where small, or by treating
systems where the scattering waves have to overcome barriers. In the latter case, the
semiclassical analysis needs some refinements. Equally or more problematic is the fact that
when)" T. < 1, the resonances become isolated. This calls for a semiclassical theory that
deals with times larger thaty .

This is a good point to refocus the attention to one issue in the literature (see for instance
[25]) that is often confusing. The ensemble average is performed for a fixed number of
channels and many resonances between channel thresholds. The accuracy of the statistical
approach increases as the number of resonances increase. With such a construction it is not

(43)
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] i " . A i i ! : L 1

* b .

0.2
R -
T g T T
T

Figure 3. Comparison between the semiclassical (full lines) and the exact random matrix results
for the time delay correlator (case of preserved time-reversal symmetry). We plot the normalized
correlatorsk ¥ = I'’K. /(t)? versus the normalized energy I'. Different line styles indicate

the different number of open channels; broken, chain, and dotted correspane=tg, 5, 10,
respectively. The inset shows the difference between random matrix results and semiclassics.

possible to use this theory to statistically analyseShmatrix of a system like the three-disc
problem, since between channel thresholds there are very few resonances, explaining the
disagreement in [25]. However, since one takes the trace over the channels to obtain the
Wigner—Smith time delay, provided > 1, a small change imx seems not to affeck.,

as observed in [19].

5. Conclusions

In this paper we presented a semiclassical derivation of the formula connecting the Wigner—
Smith time-delayr to the resonance density of the scattering region, corresponding to a
chaotic system. We showed thatcan be written as a sum over the periodic orbits inside
the repeller. The physical interpretation of this relation is that the repeller is responsible for
the time spent in the cavity by the scattering trajectories. An open trajectory that closely
approximates a periodic one, can spend a long time in the scattering region. This dwell
time essentially depends on the stability of the periodic trajectory that is approached. As a
result, the typical classical dwell time depends on few bulk characteristics of the scattering
system. The interesting achievement of the semiclassical theory is that it is possible to
write scattering observables in terms of classical trajectories that never leave the system.
Doing so, one avoids all problems inherent of a semiclassical formulation in terms of open
trajectories.

One of the striking features of the semiclassical approximation for a scattering system
is its accuracy. In distinction to the usual studies of density—density correlators in closed
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systems, here one has no need to account for times of the ordgr, tdie timescale where

the semiclassical approach starts failing. Trajectories entering an open chaotic system cannot
typically stay inside the scattering region for times much longer thanThis fact provides

us with a natural cut-off for any semiclassical summation formula, namfeljtself. If we
assume that convergence is the only problem of the semiclassical formalism, systems with
increasing numbers of open channels will be described by the semiclassical theory with
increasing precision as compared with the exact theory.

Although we already know the exact statistical result for several correlators and
distributions involving the Wigner—-Smith time delay, such an approach, by construction,
does not have information about nonuniversal quantities (such,ds., etc). Those are
usually extracted from the experiment. The point of this paper is that this information is
usually available from the classical dynamics and the semiclassical approach can always be
adapted to give a method to compute the nonuniversal scaling factors. In summary, even
if the semiclassical theory cannot compete in accuracy, it can be used as a complement to
the statistical approach.

Acknowledgments

We would like to thank Eduardo R Mucciolo for many interesting discussions. This work
was supported by the Conselho de Desenvolvimento ieme Tecnabgico (CNPg/Brazil),

by the Centro Latino Americano deidica (CLAF), and by the Fundao de Amparoa
Pesquisa do Rio de Janeiro (FAPERJ/Brazil).

References

[1] Wigner E P 1955Phys. Rev98 145
[2] Smith F T 1960Phys. Rev118 349
[3] Eisenbu L E 1948PhD ThesisPrinceton University (unpublished)
[4] Nussenszvg H M 1972Phys. RevD 6 1534
Nussenszvei H M 1997 Phys. RevA 551012
[5] Bittiker M, Pietre A and Thomas H 1998hys. Rev. Let{7r0 4114
[6] Gopar V A, Mello P A and Rittiker M 1996Phys. Rev. Lett77 3005
Brouwea P W and Bittiker M 1997 Europhys. Lett37 441
Brouwer P W, van Langen S A, Frahm K MjBiker M and BeenakkeC W 1997Phys. Rev. Let79 913
[7] Doron E, Smilansky U and Frenkel A 19%hys. Rev. Lett65 3072
[8] Lewenkopf C H, Miller A and Doron E 1992Phys. RevA 45 2635
[9] Alt H, Graf H-D, Harney H L, Hofferbert R, Lengerer H, Richter A, Schardt P and Weidd#lemH A 1995
Phys. Rev. Letfr4 62
[10] Bogomolny E 1992Nonlinearity 5 805
[11] Balian R and Bloch C 1974Ann. Phys85 514
[12] Friedel J 1952Phil. Mag. 43 153
[13] Rouvinez C and Smilansky U 1996 Phys. A: Math. Gern28 77
[14] Doron E and Smilansky U 1998onlinearity5 1055
[15] Jung C and SelignmaT H 1997Phys. Rep285 77
[16] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechan{d&ew York: Springer)
[17] Lewenkop C H and Weidenriller H A 1991 Ann. Phys21253
[18] Bohigas O, Giannoni M-J, de AlmeadA M O andSchmit C 1995Nonlinearity 8 203
[19] Eckhardt B 1993Chaos3 613
[20] Fyodorov Y V and Sommers H-J 1997. Math. Phys38 1918
[21] Kadanof L P and Tang C 1984roc. Natl Acad. Sci., US81 1276
[22] CvitanovE P and Eckhardt B 1983. Phys. A: Math. Gen24 L237
[23] Hanny J H and Ozorio de Almeal A M 1984 J. Phys. A: Math. Genl7 3429
[24] Eckmann J-P and Ruelle D 198%v. Mod. Physb7 617



[25]

[26]
[27]
(28]
[29]
[30]
(31]
(32]

[33]
(34]
(35]
(36]
(37]
(38]

(39]
(40]
[41]

Quantum time delay in chaotic scattering 4897

Gaspard P and RécS A 1989J. Chem. Phys90 2242

Gaspard P and RéicS A 1989J. Chem. Phys90 2255

Berry M V and Robnik M 1986J. Phys. A: Math. Genl9 649

Bruus H, LewenkopC H and Mucciob E R 1996Phys. RevB 53 9968

Harney H L, Dittes F M and Miller A 1992 Ann. Phys220 159

Dittes F-M, Harng H L and Muller A 1992 Phys. RevA 45 701

Muga J G and Wardla D M 1995 Phys. RevE 51 5377

Lehmann N, Savin D, Sokolov V and Sommers H-J 1995 Phy8&a572

Mahaux C and Weideniler H A 1969 Shell-model Approach to Nuclear Reactiofensterdam: North-
Holland)

Bohigas O, Giannoni M-J and Schmit C 19B#ys. Rev. Let52 1

Efetov K B 1983 Adv. Phys32 367

VerbaarschbJ J M, Weidennilller H A and Zirnbaue M R 1985Phys. Rep129 367

VerbaarschbJ J M 1986 Ann. Phys., NY168 368

Fyodorov Y V, Sawh D V and Sommers H-J 1997hys. RevE 55 R4857

Sokolor V V and Zelevinsly V G 1989 Nucl. Phys A 504 562

Sokolor V V and Zelevinsy V G 1992 Ann. Phys216 323

Lehmann N, Savin D, Sokolov V and Sommers H-J 198f&l. Phys A 582223

Fyodoroy Y V and Sommers H-J 199Bhys. Rev. Let{76 4709

Fyodorar Y V 1995 Mesoscopic Quantum Physied E Akkermanst al (Amsterdam: Elsevier)

Pluh& z, Weidenniiller H A, Zuk J, LewenkopC H and Wegner F 1998nn. Phys., NY243 1

Jalabert R A, Muccia@ E R and Pichard J-L 1997. Physique7 1267



